25 research outputs found

    Observed deep energetic eddies by seamount wake

    Get PDF
    Despite numerous surface eddies are observed in the ocean, deep eddies (a type of eddies which have no footprints at the sea surface) are much less reported in the literature due to the scarcity of their observation. In this letter, from recently collected current and temperature data by mooring arrays, a deep energetic and baroclinic eddy is detected in the northwestern South China Sea (SCS) with its intensity, size, polarity and structure being characterized. It remarkably deepens isotherm at deep layers by the amplitude of ~120 m and induces a maximal velocity amplitude about 0.18 m/s, which is far larger than the median velocity (0.02 m/s). The deep eddy is generated in a wake when a steering flow in the upper layer passes a seamount, induced by a surface cyclonic eddy. More observations suggest that the deep eddy should not be an episode in the area. Deep eddies significantly increase the velocity intensity and enhance the mixing in the deep ocean, also have potential implication for deep-sea sediments transport

    Surface warming-induced global acceleration of upper ocean currents

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Peng, Q., Xie, S.-P., Wang, D., Huang, R. X., Chen, G., Shu, Y., Shi, J.-R., & Liu, W. Surface warming-induced global acceleration of upper ocean currents. Science Advances, 8(16), (2022): eabj8394, https://doi.org/10.1126/sciadv.abj8394.How the ocean circulation changes in a warming climate is an important but poorly understood problem. Using a global ocean model, we decompose the problem into distinct responses to changes in sea surface temperature, salinity, and wind. Our results show that the surface warming effect, a robust feature of anthropogenic climate change, dominates and accelerates the upper ocean currents in 77% of the global ocean. Specifically, the increased vertical stratification intensifies the upper subtropical gyres and equatorial currents by shoaling these systems, while the differential warming between the Southern Ocean upwelling zone and the region to the north accelerates surface zonal currents in the Southern Ocean. In comparison, the wind stress and surface salinity changes affect regional current systems. Our study points a way forward for investigating ocean circulation change and evaluating the uncertainty.Q.P. is supported by the National Natural Science Foundation of China (42005035), the Science and Technology Planning Project of Guangzhou (202102020935), and the Independent Research Project Program of State Key Laboratory of Tropical Oceanography (LTOZZ2102). D.W. is supported by the National Natural Science Foundation of China (92158204), and the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (311020004). S.-P.X. is supported by the National Science Foundation (AGS-1934392). Y.S. is supported by the National Key Research and Development Program of China (2016YFC1401702). G.C. is supported by National Natural Science Foundation of China (41822602). The numerical simulation is supported by the High-Performance Computing Division and HPC managers of W. Zhou and D. Sui in the South China Sea Institute of Oceanology

    Progress of regional oceanography study associated with western boundary current in the South China Sea

    Get PDF
    Recent progress of physical oceanography in the South China Sea (SCS) associated with the western boundary current (WBC) and eddies is reviewed in this paper. It includes Argo observations of the WBC, eddy detection in the WBC based on satellite images, cross-continental shelf exchange in the WBC, eddy-current interaction, interannual variability of the WBC, air-sea interaction, the SCS throughflow (SCSTF), among others. The WBC in the SCS is strong, and its structure, variability and dynamic processes on seasonal and interannual time scales are yet to be fully understood. In this paper, we summarize progresses on the variability of the WBC, eddy-current interaction, air-sea interaction, and the SCSTF achieved in the past few years. Firstly, using the drifting buoy observations, we point out that the WBC becomes stronger and narrower after it reaches the central Vietnam coast. The pos-sible mechanisms influencing the ocean circulation in the northern SCS are discussed, and the dynamic mechanisms that induce the countercurrent in the region of northern branch of WBC in winter are also studied quantitatively using momentum balance. The geostropic component of the WBC was diagnosed using the ship observation along 18°N, and we found that the WBC changed significantly on interannual time scale. Secondly, using the ship observations, two anti-cyclonic eddies in the winter of 2003/2004 in the northern SCS, and three anti-cyclonic eddies in the summer of 2007 along 18°N were studied. The results show that the two anti-cyclonic eddies can propagate southwestward along the continental shelf at the speed of first Rossby wave (~0.1 m s1) in winter, and the interaction between the three anti-cyclonic eddies in summer and the WBC in the SCS is preliminarily revealed. Eddies on the continental shelf of northern SCS propagated southeastward with a maximum speed of 0.09 m s-1, and those to the east of Vietnam coast had the largest kinetic energy, both of which imply strong interaction between eddy activity and WBC in the SCS. Thirdly, strong intraseasonal variability (ISV) of sea surface temperature (SST) near the WBC regions was found, and the ISV signal of SST in winter weakens the ISV signal of latent heat flux by 20%. Fourthly, the long-term change of SCSTF volume transport and its connection with the ocean circulation in the Pacific were discussed

    Marine Vehicle Sensor Network Architecture and Protocol Designs for Ocean Observation

    Get PDF
    The micro-scale and meso-scale ocean dynamic processes which are nonlinear and have large variability, have a significant impact on the fisheries, natural resources, and marine climatology. A rapid, refined and sophisticated observation system is therefore needed in marine scientific research. The maneuverability and controllability of mobile sensor platforms make them a preferred choice to establish ocean observing networks, compared to the static sensor observing platform. In this study, marine vehicles are utilized as the nodes of mobile sensor networks for coverage sampling of a regional ocean area and ocean feature tracking. A synoptic analysis about marine vehicle dynamic control, multi vehicles mission assignment and path planning methods, and ocean feature tracking and observing techniques is given. Combined with the observation plan in the South China Sea, we provide an overview of the mobile sensor networks established with marine vehicles, and the corresponding simulation results

    The Indonesian Throughflow and the Circulation in the Banda Sea: A Modeling Study

    No full text
    To investigate the relationship between the Indonesian ThroughFlow (ITF) and the Banda Sea circulation, we set up a high-resolution ocean circulation model for the western Pacific and northern Indian Oceans. This well-validated model demonstrates complex distributions of the along-channel velocity in different straits, with vertically sheared flows in the Makassar and Maluku straits but horizontally sheared flows in the Halmahera, Timor, and Ombai straits. The model also reveals a three-layer circulation pattern in the Banda Sea: clockwise, counterclockwise, and clockwise in the upper (2,250 m) water column, respectively. The Lagrangian tracking code TRACMASS is used to diagnose the sources and sinks of Banda Sea waters. The backward/forward tracking experiment pinpoints the inflows/outflows in the straits surrounding the Indonesian Archipelago (IA), which directly affect the Banda Sea. These TRACMASS results imply active vertical exchanges in the Banda Sea, which result in fast flushing with a typical time scale of 8years. Based on the profiles of net transport into and out of the Banda Sea estimated from the tracking experiments, the three-layer circulations of the Banda Sea are dynamically explained in terms of the potential vorticity (PV) integral constraint: the PV flux across the boundary and the wind stress curl act in concert with approximately equal order of magnitude for the clockwise circulation in the upper layer, while the positive (negative) PV flux to the middle (bottom) layer corresponds to the counterclockwise (clockwise) circulation. Plain Language Summary The ITF is the tropical unidirectional flow from the Pacific Ocean to the Indian Ocean that has a profound effect on the circulation, water properties, and ecosystems of both oceans. The Banda Sea is centrally located in the IA and on the way of the ITF, but the relationship between the ITF and the Banda Sea circulation has not been studied. High-resolution ocean simulation provides an effective approach to address this scientific question as direct observations from the region are rare in space and time. In this work, we apply the Regional Ocean Modeling System to the western Pacific and northern Indian Oceans to depict the three-dimensional circulation inside the IA and its relationship to the ITF. For the first time, the model results reveal an interesting three-layer clockwise-counterclockwise-clockwise in the Banda Sea. Moreover, we apply the Lagrangian trajectory code TRACMASS to diagnose the sources and sinks of Banda Sea waters. TRACMASS results identify the position and relative contribution of the inflow and outflow to the Banda Sea via a labyrinth of passages around the IA, which are particularly associated with the ITF. All these help us to better understand the ITF and the Banda Sea circulation

    Targeted observation analysis of a Northwestern Tropical Pacific Ocean mooring array using an ensemble-based method

    No full text
    An important supplement for ocean observing systems, the Northwestern Tropical Pacific Ocean (NWTPO) mooring array including 15 moorings equipped with Acoustic Doppler Current Profilers (ADCP) devices was developed by the Chinese Academy of Sciences and deployed in 2013. This study assessed the performance of this mooring array in monitoring the intra-seasonal and low-frequency (above 91 days) variability of oceanic currents by conducting targeted observation analyses using an ensemble-based method. Key regions for monitoring intra-seasonal variability of the NWTPO circulation are the equator, Indonesian throughflow (ITF), headstream of the North Equatorial Countercurrent (NECC), and Subtropical Countercurrent (STCC). For monitoring intra-seasonal variability, the range of each mooring is confined to a local scale. Therefore, NWTPO moorings cannot adequately resolve intra-seasonal variability in areas of the ITF, the headstream of the NECC, and STCC due to location constraints of the moorings. For monitoring low-frequency variability of NWTPO circulation, the key regions are the Western Boundary Current (WBC), NECC, and the Equatorial Undercurrent (EUC). NWTPO moorings performed relatively well in monitoring the low-frequency variability, as indicated by the strong background correlations between each of the currents. The NWTPO mooring array plays an important role in monitoring the location and intensity of background currents. Because moorings are costly and require a high-density distribution for optimal performance, understanding the multi-timescale dynamical nature of the NWTPO current system is critical for the deploying future moorings in this region

    Progress on deep circulation and meridional overturning circulation in the South China Sea

    No full text
    The deep overflow through the Luzon Strait drives the cyclonic deep circulation in the South China Sea (SCS). In the mean time, the intruding Pacific deep water transforms and upwells due to enhanced diapycnal mixing in the SCS. Both processes greatly contribute to the SCS meridional overturning circulation (SCSMOC). At the same time, both the deep circulation and meridional overturning circulation are modulated by rough topography in the SCS. Furthermore, the spatial structure of the SCSMOC infers a link between the upper-layer circulation and deep circulation in the SCS. This paper reviews recent advances in the SCS deep circulation and meridional overturning circulation, including the driving mechanism of the SCS deep circulation and its modulation by topography, as well as the spatial structure of the SCSMOC and its dynamical mechanism

    Deep-water sedimentary systems and their relationship with bottom currents at the intersection of Xisha Trough and Northwest Sub-Basin, South China Sea

    No full text
    Based upon 2D reflection seismic data and numerical modelling, this study confirms the presence of a complex deep-water sedimentary system on the present-day seafloor at the intersection of the Xisha Trough and the Northwest Sub-Basin (South China Sea) and investigates their relationship with bottom currents. The deep water sedimentary system consists of submarine canyons, slides and slumps, wave-like successions, mounded drifts and two groups of marginal depressions (those with erosional features and those appearing as morphological sediment sinks). Three-dimensional process-based modelling is applied to investigate sediment dynamics induced by a combined effect of tidal currents and a quasi-steady geostrophic current (South China Sea Deep Water Circulation). Simulation results show that the South China Sea Deep Water Circulation at the southeastern flank of the seamount plateau could reach velocities of 15 cm/s during flood tides, enabling erosion and transport processes. In contrast, the rest of the plateau area is favoured for deposition, since current velocities in this region are persistently lower than 10 cm/s. The current velocities at the feet of the obstacles (where the morphological depressions are located) are strengthened and are several cm/s higher than that in adjacent flat areas (e.g. where the mounded drifts are located). The flow is constricted and accelerated after being deflected by the obstacles, resulting in contrasting higher sedimentation rates within the mounded sediments and lower rates at the morphological, depressions. A comparison between the seismic stratigraphy and the simulated fluid dynamics enables a decoding of the pathway, identifying the current regime as well as unravelling the relationship between depositional processes and the deep-sea water circulation. This study provides new insights and exposes new challenges in understanding the dynamics of deep-sea sedimentation processes in South China Sea. (C) 2015 Elsevier B.V. All rights reserved

    Coastal upwelling in summer 2000 in the northeastern South China Sea

    No full text
    Using a combination of hydrographic, tide-gauge, near-bottom mooring, and satellite observations; and a numerical circulation model, we investigate the coastal upwelling in the northeastern South China Sea (NSCS) off the coast of Fujian and Guangdong Provinces, China, in the summer of 2000. Subsurface upwelling phenomenon exists mainly near the bottom boundary in the whole region investigated. It is closely related to the coastal sea level fluctuations, which are evidently modulated by both the local wind-forcing and the large-scale circulation. The northeastward interior flow following the bathymetry is accelerated by the drop of coastal sea level and leads to onshore transport and subsequent cooling in the bottom boundary layer (BBL) over the shelf west of Shantou. To the east of Shantou, the near-bottom flow veers more eastward, parallel to the coastline, and transports the nearshore cold water mass farther to the southern Fujian coast. The cross-shelf advected cold water does not always penetrate through the stratification and reach the surface. The local wind exhibits considerable synoptic variability. The decrease in sea surface temperature (SST) is mostly significant near Dongshan-Shantou, intermittent in time and intensifies preferably during weather events that bring southwesterly alongshore wind. To the west a freshwater tongue originating from the Pearl River forms a barrier layer, which results in high surface temperature in the freshwater plume. The observational evidences and modeled results shown in this study provide important information for further understanding the ecological effects associated with the upwelling processes in the NSCS.973 program [2011CB403504]; CAS [KZCX1-YW-12-01, SQ200809]; NSFC [41006011]; NSFC-GD [U1033003]; Guangdong Natural Science Foundation [S2011010001001

    The Contribution of Local Wind and Ocean Circulation to the Interannual Variability in Coastal Upwelling Intensity in the Northern South China Sea

    No full text
    Plain Language Summary Using in situ data, satellite observations, and model outputs, we analyzed the interannual variability in coastal upwelling intensity in the northern South China Sea. Comparing coastal upwelling observed from three cruises during the summers of 2008 and 2016, we found that coastal upwelling was stronger during 2016 compared to 2008, although the local upwelling favorable wind was stronger in 2008. The stronger near-bottom cross-shelf current and shallower thermocline in the slope resulted in stronger upwelling intensity during the summer of 2016. The topographic position index (TPI), which is defined by the sea surface temperature difference between one center cell and its neighbors, was used to quantify the interannual variability in upwelling. Stronger (weaker) upwelling intensity occurred during the summers of 2007, 2008, 2011, 2015, and 2016 (2004, 2009, 2012, and 2014) when the local wind was more favorable (less favorable) to coastal upwelling. The correlation coefficient between the area-weighted TPI and alongshore wind speed was -0.60, thereby confirming that local wind is the primary dynamical factor controlling the interannual variability in upwelling intensity. The correlation coefficient between the area-weighted TPI and the eastward boundary current transport averaged between the 75- and 100-m isobaths on the shelf was -0.42, indicating that the interannual variability in large-scale circulation in the northern South China Sea also contributes to the interannual variability in upwelling intensity. The anomalously shallow thermocline in the summer of 2016 was likely associated with the strong 2015-2016 El Nino event through planetary wave propagations. Coastal upwelling, transporting deep, cold, saline, and nutrient-rich water to the surface result in high levels of primary production and fishery production. The coast of the northern South China Sea (NSCS) features seasonal coastal upwelling during the boreal summer. The summer southwesterly wind is widely regarded as the main driving mechanism for coastal upwelling in the NSCS. Previous studies have shown that the interannual variability in coastal upwelling intensity is largely controlled by the interannual variability in local winds in the NSCS, which is closely related to the El Nino-Southern Oscillation. Based on in situ data, we found that the upwelling was much stronger during 2016 than during 2008, though the local wind was more favorable to upwelling during 2008, which indicated that local wind is not the sole factor controlling the interannual variability in upwelling intensity in the NSCS. Further studies showed that, beside the locale wind, the interannual variability in shelf circulation could also contribute to the interannual variability in coastal upwelling intensity due to the topographically induced upwelling (induced by the interaction between northeastward large-scale current and alongshore variable topography) in the NSCS. In addition, thermocline depth variation on interannual time scale likely influences the coastal upwelling intensity in the NSCS
    corecore